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ABSTRACT

The principal assumptions used by R. Kraichnan in
formulating a theory of turbulence are reviewed, and their
meaning is examined in the light of a mathematical model.
A regression function is defined and used to evaluate the
triple correlations. The importance of the fourth order
cumulants is discussed. The merit; of the theory are
1llustrated by comparison with experimental results--in
the case of the mathematical model -- of grid turbulence

]

(skewness factor) and of turbulence at very large Reynclds

number.
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I, INTRODUCTION

The object of this review is to examine the generesl method proposed by
R. Kraichnan several years ago. We will probe the nature of the assumptions.
The numerous mathemstical deteails will receive little attention. The theory
wvas first proposed in the context of MHD turbulence, where comparison with
experiment was not possible. The problem was then reduced to the case of
ordipary turbulence (homogeneous, isotropic, and incompressible), and some
agreement wvas found.

There is little doubt that Kraichnan's gereral approach can be extended to
MAD problems, to turbulent shear flows, or to plasma turbulence. In fact, &
whole category of problems of physics may benefit from any success in the field
of nonlinear random problems. For example the method may apply to nuclear
magnetic resonance.

The method of Kraichnm_.iy characterized by the use of a regression function
that describes the average effect of a small perturbation imposed on the tur-
bulent flow. In order to introduce this function as clearly as possible and to
shov that it can be measured, I shall refer to a model problem. This problem
is only a mathematical exercise, void of any physical reality, but easier to
treat than the simplest case of turbulence. The model problem has the advantage
that it can be integrated numerically with a large computer so that the theory .

can be compared to experimental results.

-1-




II. BSTATEMENT OF THE PROBLEM

i Let us start from the equetions of Navier-Stokes written in the following,

somevhat informal form:

(3v, /3t) + L v,(3v, /2xe) + (3p/dx,) = v(a2V./EX.ax.) ,
(1)
Z (3v,/ox,) = 0.
vhere v(x,t) is the Eulerian velocity and p the pressure. The density is umity,
v is the viscosity, and the dots represent assorted indices 1, 2, 3. The |
sumation extends over three terms, and there is a total of four equations.
In order to obtain a system of ordinary nonlinear differential equations,
instead of partial differential equations, we shall nov use a Fourier trans-
P formation in the space coordinates. The Fourier transforms u(k,t) are defined

such that

v =2 u.(k)t) exp(ik,x, ) (2)

=

The symbol k represents & wave vector, and the boundary conditions
correspond to a periodic flov. The interesting part of the flow is confined

to a cubic box of size L; therefore the lowest magnitude of the wave vector

shall be 2n/L. As we consider higher modes, the magnitude of k increases in
steps, and many different orientations are possible. In principle, the magni-

tude of k could go to infinity, but we do not want to deal with wave lengths

. comparable to microscopic scales, such as the mean free path. Thus we shall

i




specify thet the magnitude of k hes a maximum. As long as this meximum is high

enough, sey ten times above the Kolmogoroff threshold, it has no significance.

The summation of Eq. (2) therefore covers & large but finite number of terms. .
By entering Eq. (2) into Eq. (1) and collecting the terms proportiomal to

| eikx, we obtain the equations of NevierStokes in the following form:

avi(k)/at =T & m ud(k') uh(k") - vkzui (3)

The coefficients a are exactly defined from :-he Navier-Stoke: eguatioms.

isb
The two Fourier components multiplied by 8, & correspond to two wavenumbers k'

and k" such that k' + k" = k. Thus the sumation is extended over all triangles
in & wavenunber space. Perhaps one could formally inclrde all pairs of vectors

| ' end decide that a h is zero unless the corresponding vectcrs torm & closed . ' f

1J
triangle. . |

For each magnitude and orientation of k there are three such rquéf.‘ ous, E0

that we have now e very lerge system of nonlinear ordinary differential

| equations. The continuity equation is implicit.

I will now recast this system in a form vwhich is more appropriate for a
review, The nev form will also be more general and will deal only with real
quantities. Indeed, every ui(k,t) and every 8, b is complex. Begirning w.th

the lowest magnitude of k and a first orientation, we define

alfe




uy (i) = Fy(2) + 4F,(4)
(I, t) = Fy(t) + 17, (4) () |
ug(kyt) = Fy(t) + 1Fg(t)

Proceeding to the next orientation or magnitude of k, we write

w (g, t) = Fo(t) + 1xg(t)
uy(i t) = Fo(t) + F) (1) (5)
wy(ky,t) = Fy, (8) + 1F),(1)

and so on down the list of wavenunbers. The last expression is

u3(km,t) RPPPPPRIL £ 8 (6)

This defines the real quantities Fl to FN vhere N 1s a very large number,

For the simplest case of turbulence N would be of the order of 106. Each I*"1

varies with the time. Note that there are six F's for each wavenumber, so

that the large wavenunbers correspond to functions of large indices..

The equations of Navier and Stokes can be written in terms of the new

functions as follows:

aF,fat = L e, o F M + Lb T, (n

-5-




where the coefficients ¢ are purely real and related to the coefficients

ijk

a, 3k of the previous formulation. The coefficients bi 3 come from the viscous

terms. These equations are of a very general form, and they encompass a wide
assortment of problems. Shear flow turbulence, MHD turbulence, or plasma
turbulence, which do not contain nonlinear terms worse than bilinear, can be

reduced by Fourier transformation to a system of equations of the form of

Eq. (7).

If the terms in c are negligible, we have a classic linear problem. For

ijk
small values of the nonlinear term, a method of perturbation can probably render

some services. In turbulence, the nonlinear terms become dominant, and a funda-

mentally different situation appears. In fact, the terms in b, ., either become

iJ
negligible, or add only some minor complications to the general strategy. For

simplicity, we shall now drop these linear terms. They could be carried along
in a detailed treatment.

The coefficients c¢ 11k grow with the first indices. Indeed, the basic

J
equations have terms such as vo(av °/axo) that lead to coefficients proportional

to the wavenumbers. Thus the coefficients having large first indices will have
large values, since they correspond to large wavenumbers.
It follows that a function such as F865 fluctuates faster than a function

such as F..; this introduces important statistical differences between the

32
various functions.

The problem is to determine the statistical properties of the Fi

from the set of coefficients c 13k generated by the equations of Navier-Stokes,

and from some suitable assortment of initial conditions.

, starting



III. A MATHEMATICAL MODEL

In order to examine the reasoning of Kraichnan with maximum clarity, I
shall occasionally refer to a model problem, which is not related to any
particular flow but is simply defined by Eq. (7) with a convenient choice of
the coefficients ¢y Jk.l For the model, these coefficients are simply taken
from a collection of random numbers having a root mean square of unity and an
average of zero. The initial conditions, that is, the values of all the F1 at
t = 0, are also chosen at random.

If the number of functions F is less than 100 or so, the problem can be
integrated numerically with sufficient accuracy at an acceptable cost. I
have found that statistical reproducibility occurs already when N is larger
than 20, and satisfactory numerical experiments can be carried out with N = 48.
This is a great relief from turbulent cases and it is principally due to the
fact that all functions Fi have similar behavior because all ccefficients have
the same order of magnitude.

The state of the flow, or that of the model, is specified at any time by
the N functions Fi. This corresponds to a point in a space of N dimensions.
The kinetic energy of the flow is defined as E = Z FiFi’ and it follows from
Eg. (7) that E is a constant, since the viscous terms have been discarded. In

the case of the model, it is easy to adjust the coefficients ¢ so that E is

ijk
also an invarient. Then, as the time increases, the representative point stays
on the surface of the hypersphere, in the N-dimensional space.

Starting from some initial conditions at t = 0, we can imagine the tra-

Jectory, perhaps like the solid line shown in Fig. 1.

e, =
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Figure 1. Solution of a Turbulent Energy
Preserving Problem in a Multi-
dimensional Space
In Fig. 2 ve see the result of a numerical integration of the model with
N = 48. A particular function F; displays random fluctuations. The other 47

functions have a statistically similar behavior.

Fs

TIME

Figure 2. Behavior of a Component in & Numerical
Experiment




IV, THE AUTOCORRELATION FUNCTION

The physicist confronted with the signal of Fig. 2 immediately realizes
the futility of a theory giving every wiggle of the solution. Some statistical
reduction is necessary, and the first question is, "What is the power spectrum?”
The fluid dynamicist will ask the equivalént question, "What is the auto-

correlation?"

This function is defined as

H(t) = F(t) F(t + 7) (8) ‘

In the case of turbulence, this function varies with the index i and with

the corresponding wavenurber. This function H(k,7) could be measured, but this
has not been done. Perhaps the results of Favre et a.l.2 could furnish
such information.

In the case of the model, H is independent of the index and the computer can
easily determine H(T). The results give the bell-shapeb. curve shown in Fig. 3.

S




Figure 3.

T

Autocorrelation Function of the Model Problem
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V. EQUATION FOR THE AUTOCORRELATION FUNCTION

The theoretician is now challenged to present an expression for H(r). His
first step will be to form an equation for He For this purpose we denote
F(t') as F', After miltiplying the basic Eq. (7) by F' and averaging, we

obtain
- _—
-(a/ar) = ZFi(dFi/dt) = Z ik F1 Fyfx (9) '

On the right hand side, we have a large number of terms, each one a triple
correlation. Since the left hand side is of the order of magnitude of unity,
in some appropriate units of time, each triple correlation must be fairly small.
Thus the various components Fi are almost, but not quite, independent. The
classical method would now lead to equations for the triple correlations, in
terms of quadruple correlations, followed by some drastic assumptions on the
quadruple hereotationat” | Kratoim: attempts to directly evaluate the triple
correlations by means of a regression function. We shall now follow this new

approach,

e f
A ¥ o 4ol P
b ) e e e s

i o st sl




-

Figure 4. Effect of a Small Perturbation
on a Turbulent Solution

Figure 5. Effect of a Small Perturbation on a Component of the
Numerical Model -




VI. THE REGRESSION FUNCTION |

Let us come back to the model and examine the stability of the solution.
After obtaining the solution for a given set of coefficients and a given set
of initial conditions, let us reset the computer and repeat the numerical
iategration. Since every element of the computer is fully controlled, the
integration is completely reproducible., Even the errors (truncation, finite
step size, etc.) occur in exactly the same fashion.

At time t. we can stop the computer and modify one of the 48 fumctions.

1
Let us say that we increase F; by ¢ = 0.0l (The root mean square of F, 1s

unity). The computer is then instructed to resume integration. The effect

of the disturbance is illustrated in Fig. 4. At time tl’ the trajectory makes

a sharp step in the direction of the fifth axis; thereafter it follows the

undisturbed trajectory fora while, gradually drifting away.

After a long time, the perturbed solution is far away from the undisturbed
solution, somewhere on the hypersphere, All correlation between the two

trajectories has been lost. The two functions F 3 and FJ’ .

in Fig. 5. The difference Af = F5 ¢ " Ii'5 cen be dividea by ¢, so that it Jumps
’

can be plotted, as

from zero to wnity at t = tl.

After a long time, this normalized difference becomes very large, of the
order of 1/¢, but the probability that it will be positive is equal to the
probability that it will be negative.

-13-
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Figure 6. Normalized Effect of & Small Perturbation
for Different Initial Conditions
(Numericel Model)

G(T)

Figure 7. Regression Function of the Model Problem

1k




Once again, the situation calls for a statistical reduction. Let us
repeat the procedure, changing only the initial conditions at t = 0., For each
set of initial conditions, we have another normalized difference, jumping from
zero to unity at tl and eventually becoming very large.

A family of such results is shown in Fig. 6. Clearly, the behavior of
the differerce can be predicted for some time after tl, but the long-range
performance is completely uncertain,

The computer can be programmed to determine the average of the family of
curves showmn in Fig. 6. This average will be noted as G(T) with T = t - t*,
For 7<0, G = 0 (see ¥ig. 7). This is the regression function, and it
indicates the probable effect of a small pulse applied at T = 0. The energy
of the pulse is gradually distributed among all the N functions F. Thus, G
describes not a dissipation of energy, but a loss of information.

At t = tl, the probability distribution of F. and of any other component is

5
Gaussian, Immediately after the perturbation, the probebility distribution of
Fs 1s Gaussian, shifted by the amount €. In time, this probability will
return to normal; the function G describes this regression process.
In order to be sure that the individual differences indeed become very
large, in absolute value, I have asked the computer to determine the function K

defined as

3
K= A_rz /e (10)
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N=24

T
~

N=48

i
~4

36

L —T

Figure 8. Functions G and K for Models
of Increasing Intricacy
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Some results are shown in Fig. 8, for various values of N. The horizomtal
scales are suitably changed so that the functions G all look alike., The
functions K indeed grov and eventually level off at 1/e¢. When G is slmost zero,
the growth of K is exponential.

As N increases, note that K faollows G for 2 longer time before teking off.
This means that, as the system becomes more intricate, the actusl effect of a .
pulse can be predicted with increasing accuracy. Indeed, the gap between K
and G 1s a measure of the statistical variations between differences AF.

Por N = 10°3, K may practically venish before the final sscension. Such
systems would have a "hydrodynamical” response to perturbations!

B -17-
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VII. APPLICATION OF THE REGRESSION FUNCTION

Let us now suppose that the perturbation is not concentrated on one
instant at time tl’ but 13 continuously applied to the system.
If y(t) 1s a small fluctuating force, generated externally, we have

arfas = Z ¢ s i * (11)

If we had a linear system,' the effect of the external force could be

superposed on an ordinary solution, leading to a result such as

-

F

%
5 = F(t) +_;£ G(t=s) y(s) ds (12)

vhere § denotes a solution in the absence of external force. For a linear

system, G is simply the effect of a single pulse, without need for a statistical
averaging or a limitation to small amplitudes,

With a nonlinear system of sufficient intricacy, we can perhaps write an
equation of the form of Eq. 12, except that ¥ shm;ld become some function
closely related to a solution of the undisturbed equations.

Essentially, in an expression such as Eq. (12), the integral contains those
effects of ¢ which can be predicted by means of the regression function, while
the term in F contains the effect of the initial conditions plus those con=
sequences of the forcing function which cannot be predicted. Thus, Eq. (12)

is not very useful if we look for a formal solution of the problem,

.' -19-
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However, Eq. (12) becomes valuable vhen we form the correlation‘ﬂt' $F5
between the foircing function and the solution of the nonlinear problem.

From Eq. (12) we obtain

t
V'P=y'F 4+ J;G(t-s) Y(t-8) ds (13)

vhere ¥ = ¥'Y is the autocorrelation of the forcing function., The integral is

a simple operation on two bell-shaped functions. The correlation "ff is far

more difficult to evaluate, In fact, it would be impossible to continue the
theory if we could not dispose of this term! Essentially, since the predictable

effects of ¢ are given by the integral teF;*it is reascnable to assume that

¥'5 1s negligible, We shall do so.
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VIII. THE TRIPLE CORRELATIONS

The previous section can now be used to express the triple correlations,
Consider, for example, the equation giving FS and assume that, among the many
terms of the right hand side, we find one proportional to the product FTFQ'
What is the correlation FSFTF2 ? By pulling one term outside of the sumation

and indicating its presence as § = c572 F7F2 we have

+ .
ar/at = Z Co i gy * ¥ (14)
The argument of the previcus section can be used, treating one term as a small
perturbation applied in the presence of almost all the other interactions.

It leads to the following result:

—_——— t L
FFF(t) = oo J G(t-8)FF, F(s) Fy(s) ds (15)

This approximation is valid if the functions F7,F2 and FS are independent,
except for the linkage by the coefficient c572. Additional terms must be
entered, proportional to similar effects caused by c725 and c257. Such terms
are labelled "direct interactions" because they involve only the three
functions forming the triple correlation., There are also many possibilities
for indirect interactions, involving other functions. For example, a term
FTFSO could contribute to the generation of FlOO and a term F2F5° could

e




R
Ay
contribute to the generation of F3o9. Now, if the product r100’300 appears in . . i
the equation for drsfdt, an approximate analysis shows that the product
FFoof sy affects Fy. Thus, through the action of Fy, we have another linkage. - [R5
Kraichnan assumes that the direct interactions are the dominant cmes. This
amounts to saying that the various Fourier components are correlated three-by-
three, but not in more numerous groups.
1
j
s 'i
:
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IX. THE EQUATION FOR H

As shown in Eq. (15), a triple correlation can be expressed by an integral
over a function G and a quadruple correlation. Let us use the drastic assumption
of Milliontschikov to reduce the quadruple correlation to a product of two double
correlations. Later on, in Section XII, we shall comment on this crucial step
and examine the various kinds of quadruple correlations to offer some Jjustifi-
cation.

Triple correlations can now be given in terms of doubles. Thus the road
started at Eq. (9) leads to an expression of the type:

: dg/at = c...c...J‘To(v-s) H(s) H(s) ds (16)

This is the first of two master equations established by Kraichnan. If G

is kmown, Eq. (16) gives H.




EIRT TR (U t—

. X. THE EQUATION FOR G i

The application of & perturbation ¢ on the function F5 produces the
difference AF, seen in Fig. 6. It also causes a disturbance in every other
component of the motion, and we can define N-1 differences §F 3° While AF is
discontinuous at t = tl, the quantities §F 3 are continuous but each shows a
discontinuity in some derivative. Thus, if F9 is directly modified by F5, the
derivative of 6F9 will jump, If F, is directly affected by F9 but not by F5’

3

the second derivative of 6F3 will jump, etc.

The averaged value of any function 8F 3 is zero (J $ 5), since the pertur=

bations are "modulated" by various functions Fi.

Immediately after the perturbation, and during the decay of G, the difference

. AI"'5 and the many other differences §F j are small. Thus the basic equations can

be linearized and we write:

afat AFg = 2 2 e Jkap JFk (a7)

{ =
a/at ¥, z ¢ s sy + 2 Z ¢ 8 F (18)

In order to determine G = AFs/c, we must eliminate the quantities 8F 5 The
. equations for 8F 3 show that every one is a response of the system to a per-

turbation AF5 Fp. The predictable part of this response is

-25-




t
GFJ = chSP_;[ 6{t=8) AFS(s) Fp(s) ds (29)

AT T R T T e e

After substituting Eq. (19) in Eq. (17) and averaging, we obtain the equation

for G

dG/dr = QZc...c... ITG(T-e) 6{s) H(s) ds . (20)

This 4s the second mester equation. Together with Eq. (16) 1t forms e

closed system of equations that, in general, gives H(k,r) and G(k,T). .
The theory is now complete, It remains to integrate a system of integro=-

differential equations giving a set of bell-shaped functions. This is easy for

the model, but still a difficult task for any turbulent flow.




XI. THEORY FOR THE MOUEL

In the case of the mathematical model, the second master equation reduces
to a form identical with the first equation, so that one finds G = H, provided
that T 18 positive, Thus the single eguation is

dH/d‘l‘ - -cooocooco'r‘r H(T-S) B2(8) ds (21)

It can be integrated easily by numerical techniques, and the results are
shown in Fig. 9. The solid curve gives the experimental results, the dashes
and dots show the solution of Eq. 21 from the theory of Kraichnan,

The dots show the experimental values for G, The discrepancies between

theory and experiments are probably due to numerical errors in the integration

of Eqe 21 or to limited averaging samples, or to the fact that the theory applies

for N = @, vhile the experiments apply to N = 48,

In order to compare the new theory with older methods, we can form an

equation for triple correlations in terms of quadruple correlations and use the

drastic reduction to doubles. The result is shown in Fig. 9 by the thin curve,

vhich plunges to « ®, Thus, the new theory marks & clear progress.

«27-
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'

Heavy solid line: From numerical experiments,

Heavy broken line: From Kraichnan's theory, Eq. (21).

Thin solid line: From discard of cumulants,

Thin broken line: Regression function, from numerical work.

Figure 9. Autocorrelation Functions




'Multiplying the basic Eq. (7) taken at time t by the same equation taken at

XII. ROLE OF THE QUADRUPLE CUMULANTS

In order to examine in detail the difference between o0ld and new theories, i

we shall start by establishing an exact relation, a refreshing episode.

time t' and averaging leads to

(dF'i/d.t)(d.Fi/dt) - 1.113:"1 FBFkaFq (22) |

If the process is statistically stationary in time, the first integration ,

gives

awfar =) ) ey ge, IFBFI"F Fq ds (23) |

Note the double summation. The right hand side of Eq. (23) can be regarded

as a product between & matrix c 13k c ipq and & matrix formed by various quadruple

correlations.

Let us now approximate these quadruple correlations by products of doubles.
Since Fi'F 3 vanishes unless 1 = j, the only terms of Eq. (23) that do not

disappear are those found along certain diagonals of a matrix.

Thus the exact Eq. (23) reduces to an expression typical of these theories

= E (
dH/dT = CoeeCoooe HH ds 211-




Note that the summation has been reduced to a single sup. If there is
a small error in the evaluation of eaech quadruple correlation along the
diagonals, it will have a small effect on the result. However, if there is

a small error on each quadruple correlation awey from the diagonals, the very

large multitude of these terms may produce significant errors. Thus, it is the
neglect of the cumulants off the diagonals that is likely to cause trouble.

The theory of Kraichnan leads to Eq. (16), which reduces to Eq. (24) if we

teke G = 1. Thus, the presence of the regression function in the final results
is significant. Since G represents some effects of the complicated coupling
between the modes, it perhaps accounts for the off-diagonal terms. How well

is not known.

Finally, if we return to Eq. (16), we remember that Kraichnan uses the
simplified form for the quadruple correlations at some stage of the argument.
However, this reé.u:c.tion involves only special correlations along the diagonals
and does not abridge a double sum to a single sum. Thus, it seems that the

cumilants can be neglected only along the diagonals.




XIII. APPLICATION TO GRID TURBULENCE

The turbulence produced by a grid placed in a wind tunnel is generally
characterized by a low Reynolds number. With a mesh Mo and a free stream Uo’

we shall refer either to R, = UM o/v, ofhthe order of 15,000, or to

Rx; (O.lle)%, varying between 20 and 70.
The energy spectrum is too narrow to display the Kolmogoroff range.
Kraichnan applied his theory in the case RA = 40, assuming a convenient form
for the shape of the spectrum at t = 0., The twbulence decays, so that the
functions H and G vary slowly with the time. The successive spectra are shown
in Fig. 10. Note the decay of the energy and the production of small vortices.
The decay proceeds according to a similarity law.
b For this flow, Kraichnan determined the skewness factor S defined as

3/e
S= (6v1/3x1)3/ [:(avl/axl)2 / (25)

vhere vy and x, are along the mean flow direction. Note that S 1s nondimensional.
This factor plays an essential role in the study of nonlinear turbulent processes.
It is related to short range triple correlations and it is also proportional to

the rate of production of the mean square verticity, and to a rate-of-deform-

2
ation parameter. Certain thecries are based on an expression for the

Z eddy viscosity, which introduces one nondimensional wniversal constant
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Figure 10. Decay of the Energy Spectrum _ _
(According to Theory for R = 40) =




that must be matched with experimental data. This constant is none but the
factor 8, in a special form.

In Kraichnan's treatment it is necessary, at t = 0, to specify the triple
correlations; he started from provisions for zero triple correlations, which
correspondsto S = 0 in F:I.g. 1l. The rapid initial growth of S is compatible
with previous work of Proudman and Reid,7 vhich used the drastic treatment of
quadruple correlations. However, the new theory finds that S rapidly levels
off and retains the value S = 0.4 during the decay. This is in excellent
agreement with the experiments of Townsend and others.

Note thet Kraichnan does not adjust any constant in his determination of S,
He also treats several similar cases, always with the limit S = O.4. A kine=

matic argument shows that S cannot exceed & value near 0.8.
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XIV. THE KOLMOGOROFF SPECTRUM

In the atmosphere, the ocean, or a sulficiently large apparatus, the
spectrum of turbulence shows a portion falling as k's/ 3. We shall consider
the case of stationary turbulence, so that we must imagine some large scale
mechanism furnishing zhe energy necessary to maintain the flow, despite the
energy dissipation ¢.

In a firat'attenpt to a.pply his theory, Kraichnan met with some difficulties.
In the 1imit of very large Reynolds numbers (say RA = 300), the equation for
G{k,T) takes the form of a product

ac(x,r)/ar = {ZA (k':k")} { I‘r'(k)"':s) ds} (26)

vhere the integration in s contains only a function of T, k, and s. The sum,
however, contains a contribution from each triangle in the wavenumber space
such that k' + k" = k. If either k' or k" becomes smaller or comparable to
the wave number K at which the spectrum is maximum, the behavior of A requires

special attention. As a result, the final expression for the energy spectrum

takes the form

2(x) = /3 [(o/i0/3) + (op/65/2] (27)
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Figure 12.. Autocorrelation Functions Produced by & Simple Shear Wave
Transported at Various Uniform Speeds
(The Averaged Effect is Shown by the Heavy Line)




The term proportional to a comes from values of k' and k" larger than K, The
term proportional to b comes from the small values of k' or k", that is, from
the large scale vortices.

It is clear that if k is large, the above expression falls as k'3/ 2. If the
singular behavior did not occur, b would vanish and the spectrum would fall as
expected.

This situation prompted Kraichnan to a reexamination of the first form of
his theory. He found that the argument that I have'outlined in the previous
pages suffers from a serious defect. It can be corrected if the correlations
are defined in a sort of local frame of reference moving with the local fluid
velocity. The papers dealing with the revised theory are easily identified:
the title always contains the name of Lagrange. They are not easily read.

To give you an idea of the nature of the difficulty, I shall consider a
situation so simple that there are only two modes. First let us imagine a
fluid at rest, animated by a single stationary shear wave such that

v(x,y,z,t) = sin ax.

Clearly, the correlation v(x,t) v(x,t + T) is independent of T since the
shear wave is statiof;a.ry. Let us now displace the fluid with a supplementary
velocity U, which is constant in space and in ‘Eime. We assume that the shear
wave is transported with the velocity U.

Then the velocity observed at a fixed point varies in time and the time
correlation will fluctuate. For a particular value of U, the correlation will
be given by one-of the thin lines shown in Fig. 12. If we change the magnitude

of the velocity U, we'get some other oscillating correlation function; only the




period varies.

An average over an ensemble of different velocities U or over time, if U
changes slowly, will yield the bell-shaped correlation function shown by the
thick line in Fig. 12.

Thus, the transport of a single shear wave YWy an assortment of large scale
motions can produce a certain kind of correlation. However, one should not
expect that the theory of Kraichnan will succeed in this case. The theory
must be applied only to those correlations that are not produced by random
translations of the same shear wave.

It is too early to say that the modification proposed by Kraichnan is the
only possible one, but it is not surprising that, once the treatment for low
k' and K" 1c revised, the spectrum falls as k™>/3. The Kolmogoroff law 1is
already in the Eulerian theory. It must also be noted that the Lagrangian
theory gives a numerical value of the universal spectral constant & that is
in good agreement with experiments.

Turbulence at high Reynolds numbers ralses many interesting questions.
What is the skewness? It has not yet been measured experimentally. One could
also take the signal proportional to a velocity fluctuation and pass it through
a simple low-pass filter. The skewness of the filtered velocity could be

determined and perhaps compared with theoretical results.




XV. CRITICISM OF THE THEORY AND COMMENTS

| So far, the theory has not predicted many remarkable properties of tur-

! bulent flows, except in the field of MAD turbulence, where the confirmation
mey take a long time.
In ordinary turbulence, measurements of H(k,T) would be interesting,
since a comparison would be possible. A special effort should be made, perhaps,
to specify the odd correlations of order higher than thre-e. If the direct
interaction approximation is valid, the triple correlations should determine

those of orderafive, seven, etc. This would explain the results of Frenkiel

and Klebanoff.

Some scientists have not fully accepted the cascade theory and Richardson's
poetry. In electronics-engineering, the energy supplied at 60 cps is often
converted to .much higher frequencies, say megacycles, without any intermediate
oscillations. The spectrum haé essentially two separate peaks. If the high

frequency signal is intensely modulated, the spectrum could fill the entire

range. Thus, one can perhaps conceive other theories of turbulence, with
direct links between the very large and the very small eddies. Intermittency
might perhaps play an essential role. So far these are only speculations,

and the theory of Kraichnan still stands as the best that we have.
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